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The 1978 Pioneer Venus mission will require direct communication links
between the planetary probes and Earth. Data from the Russian spacecraft
Venera 4 indicate that these links will be subjected to lognormal fading result-
ing from atmospheric turbulence. This article analyzes the bit error rate degra-
dation for uncoded binary phase-shift-keyed (PSK) telemetry in the presence of

such fading.

l. Introduction

The 1978 Pioneer Venus mission will require direct
communication links between the planetary probes and
Earth. A review of the Russian Venera data indicates
that these links will be subjected to lognormal fading due
to the turbulent atmosphere of Venus (Ref. 1). This
paper analyzes the degradation of the bit error rate for
uncoded binary phase-shift-keyed (PSK) signals received
over the additive white Gaussian noise (AWGN) channel
in the presence of such fading.

Il. Low and High Rate Bounds

Consider an uncoded binary PSK communication link
over the AWGN channel. In the absence of fading, the
received signal has the form

r(t) = V2A cos [ot + 8.d (t)sq (ut)] +n(t) (1)
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where o. is the carrier frequency, 6, is the modulation
index (8, < 90°), d (t) is the binary data with baud time
T, (d(t) = =1), sq{wt) is the squarewave subcarrier at
frequency o, 2r/Ty < < ws << w), and n(t) is a wide-
band Gaussian noise process. If the channel has atmo-
spheric fading of the form anticipated for Pioneer Venus,
the received signal will be (Refs. 2 and 3)

r(t) =V 2Aex cos [wt + 0, d (t) sq (0st) + ¢ (£)] -+ n ()
@)

where x (t) and ¢ (¢) are stationary, jointly Gaussian ran-
dom processes, and e*'? is a lognormal random process.

From Venera 4 data, Woo (Ref. 1) has concluded that
x (t) and ¢ (¢) are narrowband processes, with one-sided
power spectral bandwidths

Wy, We~1Hz (3)
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It is assumed that the phase fading process is sufficiently
narrowband relative to the carrier phase-locked loop
bandwidth in the receiver that it can be tracked without
difficulty. Consequently, the analysis below neglects ¢(t)
and assumes that all of the degradation in link perfor-
mance due to the fading is caused by the amplitude fad-
ing process e*"!. The bit error rate, conditioned on the
fading, has the form (Ref. 4)

p(ela) = Q(a\/2p) (4)
where
o 1 T/;dt by 5
G:T[;_/O € ( )
A?sin? 6,1,

. (®)
Q= 1_ wdx exp<_x—2> (7

Ver e 2

Suppose the data rate Ry is high:

1
RB ET—' > > ‘VX (8>
B

Then x (t) is essentially constant over the baud time T},
and a reduces to a lognormal random variable

o = ex (9)
where x = x (t,) for some t.€ (0, T;), and its mean my is the

negative of its variance of (Ref. 3). Then the expected bit
error rate is given by

P(e) = Qe V2p) (10)

Now consider the extremely low data rate case, defined
by

Ry << W, (11)

Then a is a long time average of eX¥, and assuming  (£)
is ergodic,

azazexp<—%> (12)
Then
P(e)=Q [V2pexp[—ail ] (18)
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Woo has computed a variance o} =0.014 for the
Venusian atmosphere (Ref. 1). For this variance, Egs. (10)
and (13) are compared in Fig. 1 with the nonfading case
(x = 0); the parameter g in Fig. 1 is defined by

Bgzﬂ'Wx/RB (14)

The 8 =0 curve corresponds to Eq. (10); it had to be
computed numerically using a 20th-order Hermite inte-
gration formula (Ref. 5). This curve indicates a signal-to-
noise ratio degradation of 0.4 dB at a bit error rate of
10-*, and 0.9 dB at 10-* due to the fading. By comparison,
the infinite 8 curve of Eq. (13) has a degradation of

—10logy, (exp [ —of]) = 0.06 dB; o2 = 0.014  (15)

independent of the bit error rate.

For intermediate data rates (0 < 8 < ), it can be
shown that the bit error rate curve is bounded by the
B = 0 and infinite B curves. Applying Eq. (A.4) derived
in Appendix A, we have

O(v/20e 1) <P(9<Q(eV2)" (1)

In particular, the 8 = 0 curve of Eq. (10) represents a
worst-case fading degradation of the bit error rate over
all data rates.

Ill. Intermediate Rate Model

The following analysis is adapted from the work of
Tausworthe (Ref. 6) and Layland (Ref. 7) on noisy refer-
ence detection.

Suppose the covariance function of x (t) can be approxi-
mated by the expression

Ro(r)=[x(t+ 1) = x(t+ O] [x(#) — x ()]
= o} exp (—2xWi|r|) (17)

Equation (17) satisfies the requirement that Ry (0) = o2
It also yields a power spectral density of the form

&(f)s/:drﬂx(f)e-jzm:W_%/[l +<“f/>2}

(18)
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Equation (18) shows that x (t) has the required one-sided
bandwidth W.. Furthermore,

ss 0= ()« If>>We 9

This high-performance asymptotic behavior conforms
fairly well with Woo’s theoretical analysis (Ref. 1), which
shows that in fact

/

- -8/3
S« (f)/8x(0) = <W‘:> ; l>> W (20)

Using Eq. (17), and applying the results of Appendices B
and C to the random variable a in Eq. (5), it follows that

22

X

a‘-’gexp(—(ri)[l + dﬁ (ef—1 +B):| ;o<1

(21)

where 8 is defined in Eq. (14).

Note that for 8 << 1 (or Rz >> 1), a becomes a log-
normal random variable as in Eq. (9). At the other ex-
treme, when 8 >> 1, the integral expression for a in
Eq. (5) can be approximated by a sum:

1
a%ﬁZeXx (22)

i1

where the x,’s are identically distributed, statistically in-
dependent Gaussian random variables, and N is the
number of degrees of freedom of x (¢) over a baud time
T[g:

N =t =% (23)

(w)

One might consider applying the Central Limit
Theorem to Eq. (22) to conclude that a becomes Gaussian
for large N (or 8). But the probability density functions
of the lognormal random variables ex: are characterized
by long tails, which makes the Gaussian approximation
inaccurate, except near @. A better approximation for the
probability density function of o, which is accurate far-
ther into its tail, is the lognormal density. Mitchell (Ref. 8)
has demonstrated that the sum of N statistically inde-
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pendent, identically distributed lognormal random vari-
ables may be accurately approximated by a lognormal
random variable for large N.

Since o looks lognormal in the limits as 8—0 and
B—> o, it will be assumed that o is approximately log-
normal over the entire range of S3:

a=eY (24)

where y is a Gaussian random variable with mean my and
variance ¢3. Then

— (25)
o = exp (2my + 202)
Comparing Egs. (21) and (25), it follows that
. 208
ot =In|1+ 5 (e 8B —1+pB)
(26)
1
my = — 3 (03 + o%)
In Fig. 2, my/m«(mx = —o?) and ¢2/0} are plotted vs B,

for ¢¢ = 0.014. These curves show that for small 8, the
probability density function for y is a broad Gaussian
curve, with standard deviation ox, centered at —o%; as 8
increases, there is a smooth trend wherein the mean of
y shifts towards —o%/2 while the standard deviation
drops to zero. For very large B, the probability density
function of y is essentially a Dirac-delta function centered
at —(ri/z.

Using this model, the expected bit error rate is given by
the formula

1 %)
Ny .

P(e) = dyexp—['(l":agn—ﬁzilQ(eY\/Q?)

2
(27)

Applying numerical integration techniques to Egs.
(14), (26), and (27), we computed P(€) as a function of
p for ¢} = 0.014, Wx =1 Hz, and various values of Rs.
The resulting bit error rate curves for Rg = 16 and 256
bps (the lowest and highest data rates currently being
considered for Pioneer Venus 1978) are compared with
the nonfading case in Fig. 3. (The bit error rate curves
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for Ry = 64 and 128 bps, the other two rates under con-
sideration for the mission, lie too close to the Rz = 256
bps curve to be distinguished from it.) Comparing Figs.
1 and 3, it is evident that the bit error rate curves for
the Pioneer Venus data rates, predicted by the inter-
mediate rate model, lie close to the upper bound (8 = 0)
derived in the previous section. The deviation in p be-
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tween the fading and non-fading curves in Fig. 3, at a
given bit error probability P(e), is the fading loss entry
that would appear in the data channel section of a cor-
responding uncoded telemetry link design control table.
In particular, for ¢ = 0.014, Wy =1 Hz, and R; = 256
bps, the intermediate rate model predicts a fading loss
of 0.6 dB at a bit error rate of 10, and 1.0 dB at 10-°.
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Appendix A

Lemma: Bounds on the Bit Error Rate for Uncoded Binary
Data Received Over a Fading Gaussian Channel

In this section we will prove a general lemma developed
by Dr. E. R. Rodemich of the Communications Systems
Research Section.

LEMMA
Consider the random variable

o= %/T dt x(t) (A1)

which is a T-second time average of the positive, sta-
tionary random process x(t). Define the parameter

e = Q(ka) (A.2)

where k is positive and fixed, Q(+) is the normalized
Gaussian error function defined by

1
VerJy

dg e8>

Qy)= (A3)

and the overbar in Eq. (A.2) indicates the expectation of
Q(ka). Then € is bounded by

Q(kz) < € < Q(kx) (A4)
where the random variable x == x(t,) for any fixed ¢,

Proof
For arbitrary integer n, define

n J(T/n)
(XjET/ dtx(t); i=L2 ,n (A5)

J-1(T/n

so that

(A.6)

The a;’s are positive, identically distributed, (correlated)
random variables. For positive y, Q(y) is concave, since
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Eq. (A.3) implies that

= ——— Yg—Y2/2

dy’  \2x

Therefore, applying Jensen’s inequality for concave func-
tions,

(AT)

(A8)

n —

(ka;), foranyn,j

(A9)
In particular,
€ < Q(ka*) (A.10)
where
a* =lim a;; for any | (A.11)

But o* has the same probability distribution as x, so
that

€ < Q(kx) (A.12)
Now define a new set of a;’s according to
ir
o)== dt x(t); =12 --.n (A.18)

>
T -7

so that a; = «a. These a,’s are also positive, identically
distributed random variables. Define

1 nl 1 %
o= / dtst) =+ 3w, (A1)
Again, using Jensen’s inequality, it follows that
Oka) <1 3" Okay) = Oka) =€, for any n
j=1
(A.15)
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In particular, But if x(¢) is an ergodic random process,

ot = lim [1-1—17: [) "t x(t)] - (A.18)

H—

€ > O(ka*) (A.16)

where we have redefined the random variable
so that

L llnl o (A.17) e>Q(k%)  (QED.) (A.19)
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Appendix B

Crosscorrelation of Two Lognormal Random Variables

Suppose x, and x, are identically distributed, jointly
Gaussian random variables, each with mean m and var-
iance o% The joint characteristic function of x; and «x.
is given by (Ref. 4, p. 163)

M, ., (vivs) =exp (]'(v‘x1 + Vx))

= explijm(m + 1/2) — Pvwv: T F
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where p is the covariance of x, and x, defined by

p=(x; — %) (x — %) (B.2)

In particular, if m = —o? and v, =, = —f, Eq. (B.1)
vields the result

ehe’: = exp (p — o?) (B.3)
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Appendix C

Computation of First Two Moments of Lognormal
Amplitude Fading Parameter «

Suppose x(t) is a stationary, Gaussian random process
with mean m equal to the negative of its variance o°.

Suppose further that its covariance function is specified
by

s

Ro(r) = [x(t + 7) — x(t + 7)][x(t) — x(t)]

= glg2TW|T] (Cl)
where W is the approximate one-sided spectral band-
width of x(t). We would like to compute the first two
moments of the random variable

1 /("
o= TK dt er™ (C.2)
Clearly,
T=egl=¢ = (C3)
Also,
. 1 T T
e -T-/ dt / dexp 1% (8)] exp [x ()]
e—oz 7 r N
= e / dt / du e’ e2mVit-al (C4)
0 0

where we have applied Egs. (B.3) and (C.1). Defining
the parameter

B=2WT (C.5)
and making the variable change
_t
T
_tow
(=7 (C.6)
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the double integral of Eq. (C.4) becomes

1l

a2

1 n
eﬁ/.dnA/ d¢exp [o*exp (—8]¢])] (C7)
0 n-t

Equation (C.7) cannot in general be solved explicitly;
however, for small ¢ we can write

— L 7] .
of o= e“"z/ dy d¢ (1 + e Bld); ot << 1
0 n-1

\“/ (C.8)

_ 207
@ggwp+7%@¢_1+m]; << 1

(C9)
As a check on Eq. (C.9), note that
?——sexp(—e)(1+62)=1; <<l
B—-0
a —> exp (—o?) (C.10)

B> o

But from the definition of a in Eq. (C.2), we can write

(C.11)

o —> exp (—a?)

T — o0

(C.12)

which confirms Eq. (C.10).
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